Assessment on time-varying thermal loading of engineering structures based on a new solar radiation model

11Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

This paper aims to carry out the condition assessment on solar radiation model and thermal loading of bridges. A modification factor is developed to change the distribution of solar intensities during a whole day. In addition, a new solar radiation model for civil engineering structures is proposed to consider the shelter effects induced by cloud, mountains, and surrounding structures. The heat transfer analysis of bridge components is conducted to calculate the temperature distributions based on the proposed new solar radiation model. By assuming that the temperature along the bridge longitudinal direction is constant, one typical bridge segment is specially studied. Fine finite element models of deck plates and corrugate sheets are constructed to examine the temperature distributions and thermal loading of bridge components. The feasibility and validity of the proposed solar radiation model are investigated through detailed numerical simulation and parametric study. The numerical results are compared with the field measurement data obtained from the long-term monitoring system of the bridge and they shows a very good agreement in terms of temperature distribution in different time instants and in different seasons. The real application verifies effectiveness and validity of the proposed solar radiation and heat transfer analysis. © 2014 Bo Chen et al.

Cite

CITATION STYLE

APA

Chen, B., Sun, Y. Z., Wang, G. J., & Duan, L. Y. (2014). Assessment on time-varying thermal loading of engineering structures based on a new solar radiation model. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/639867

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free