Microparticle (MP) efflux is known to be mediated by the ABCA1 protein, and the plasma level of these cell-derived MPs is elevated considerably during human malarial infection. Therefore, two polymorphisms at positions -477 and -320 in the promoter of the ABCA1 gene were genotyped and tested for association with the plasma MP level in four groups of malaria patients segregated according to the clinical severity, i.e., cerebral malaria (CM), multiorgan dysfunction (MOD), noncerebral severe malaria, and uncomplicated malaria (UM). The TruCount tube-based flow cytometric method was used for the exact quantification of different cell-derived MPs in patients. Polymorphisms in the ABCA1 gene promoter were analyzed by use of the PCR/twoprimer-pair method, followed by restriction fragment length polymorphism, in 428 malaria patients. The level of circulating plasma MPs was significantly higher in febrile patients with Plasmodium falciparum infection, especially in CM patients compared to healthy individuals. The homozygous wild-type -477 and -320 genotype was observed to be significantly higher in patients with severe malaria. These patients also showed marked increases in the plasma MP numbers compared to UM patients. We report here for the first time an association of ABCA1 promoter polymorphisms with susceptibility to severe malaria, especially to CM and MOD, indicating the protective effect of the mutant variant of the polymorphism. We hypothesize that the -477T and -320G polymorphisms affect the downregulation of MP efflux and may be a predictor of organ complication during P. falciparum malarial infections. © 2013, American Society for Microbiology.
CITATION STYLE
Sahu, U., Mohapatra, B. N., Kar, S. K., & Ranjit, M. (2013). Promoter polymorphisms in the ATP binding cassette transporter gene influence production of cell-derived microparticles and are highly associated with susceptibility to severe malaria in humans. Infection and Immunity, 81(4), 1287–1294. https://doi.org/10.1128/IAI.01175-12
Mendeley helps you to discover research relevant for your work.