An FPGA-Based Quantum Computing Emulation Framework Based on Serial-Parallel Architecture

10Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Hardware emulation of quantum systems can mimic more efficiently the parallel behaviour of quantum computations, thus allowing higher processing speed-up than software simulations. In this paper, an efficient hardware emulation method that employs a serial-parallel hardware architecture targeted for field programmable gate array (FPGA) is proposed. Quantum Fourier transform and Grover's search are chosen as case studies in this work since they are the core of many useful quantum algorithms. Experimental work shows that, with the proposed emulation architecture, a linear reduction in resource utilization is attained against the pipeline implementations proposed in prior works. The proposed work contributes to the formulation of a proof-of-concept baseline FPGA emulation framework with optimization on datapath designs that can be extended to emulate practical large-scale quantum circuits.

Cite

CITATION STYLE

APA

Lee, Y. H., Khalil-Hani, M., & Marsono, M. N. (2016). An FPGA-Based Quantum Computing Emulation Framework Based on Serial-Parallel Architecture. International Journal of Reconfigurable Computing, 2016. https://doi.org/10.1155/2016/5718124

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free