Haar wavelet collocation method for the numerical solution of singular initial value problems

11Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

In this paper, numerical solutions of singular initial value problems are obtained by the Haar wavelet collocation method (HWCM). The HWCM is a numerical method for solving integral equations, ordinary and partial differential equations. To show the efficiency of the HWCM, some examples are presented. This method provides a fast convergent series of easily computable components. The errors of HWCM are also computed. Through this analysis, the solution is found on the coarse grid points and then converging toward higher accuracy by increasing the level of the Haar wavelet. Comparisons with exact and existing numerical methods (adomian decomposition method (ADM) & variational iteration method (VIM)) solutions show that the HWCM is a powerful numerical method for the solution of the linear and non-linear singular initial value problems. The Haar wavelet adaptive grid method (HWAGM) based solutions show the excellent performance for the proposed problems.

Cite

CITATION STYLE

APA

Shiralashetti, S. C., Deshi, A. B., & Mutalik Desai, P. B. (2016). Haar wavelet collocation method for the numerical solution of singular initial value problems. Ain Shams Engineering Journal, 7(2), 663–670. https://doi.org/10.1016/j.asej.2015.06.006

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free