Signaling through IL-2/IL-15Rβ (CD122) is essential for the differentiation and function of T cells and NK cells. A mAb against CD122 has been implicated to suppress autoimmune type 1 diabetes (T1D) development in animal models. However, the mechanisms remain poorly understood. We find that in vivo administration of an anti-CD122 mAb (CD122 blockade) restores immune tolerance in nonobese diabetic (NOD) mice via multiple mechanisms. First, CD122 blockade selectively ablates pathogenic NK cells and memory phenotype CD8+ T cells from pancreatic islets. In contrast, islet CD4+Foxp3+ Tregs are only mildly affected. Second, CD122 blockade suppresses IFN-γ production in islet immune cells. Third, CD122 blockade inhibits the conversion of islet Th17 cells into diabetogenic Th1 cells. Furthermore, a combination of anti-CD122 mAb and Treg-trophic cytokines (IL-2 or IL-33) enhances the abundance and function of islet Tregs. In summary, these data provide crucial mechanistic insights into CD122 blockade-mediated immunoregulation and support therapeutic benefits of this combinational treatment in T1D.
CITATION STYLE
Yuan, X., Dong, Y., Tsurushita, N., Tso, J. Y., & Fu, W. (2018). CD122 blockade restores immunological tolerance in autoimmune type 1 diabetes via multiple mechanisms. JCI Insight, 3(2). https://doi.org/10.1172/jci.insight.96600
Mendeley helps you to discover research relevant for your work.