Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation

12Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

Background: In the yeast biomass production process, protein carbonylation has severe adverse effects since it diminishes biomass yield and profitability of industrial production plants. However, this significant detriment of yeast performance can be alleviated by increasing thioredoxins levels. Thioredoxins are important antioxidant defenses implicated in many functions in cells, and their primordial functions include scavenging of reactive oxygen species that produce dramatic and irreversible alterations such as protein carbonylation.Results: In this work we have found several proteins specifically protected by yeast Thioredoxin 2 (Trx2p). Bidimensional electrophoresis and carbonylated protein identification from TRX-deficient and TRX-overexpressing cells revealed that glycolysis and fermentation-related proteins are specific targets of Trx2p protection. Indeed, the TRX2 overexpressing strain presented increased activity of the central carbon metabolism enzymes. Interestingly, Trx2p specifically preserved alcohol dehydrogenase I (Adh1p) from carbonylation, decreased oligomer aggregates and increased its enzymatic activity.Conclusions: The identified proteins suggest that the fermentative capacity detriment observed under industrial conditions in T73 wine commercial strain results from the oxidative carbonylation of specific glycolytic and fermentation enzymes. Indeed, increased thioredoxin levels enhance the performance of key fermentation enzymes such as Adh1p, which consequently increases fermentative capacity. © 2012 Gómez-Pastor et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Gómez-Pastor, R., Pérez-Torrado, R., Cabiscol, E., Ros, J., & Matallana, E. (2012). Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation. Microbial Cell Factories, 11. https://doi.org/10.1186/1475-2859-11-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free