In the current study, we used heat stress (HS) as an oxidative stress model to examine the effects of hydroxy-selenomethionine (HMSeBA), an organic selenium source, on selenium's bioavailability, antioxidant status, and performance when fed to dairy cows. Eight mid-lactation Holstein dairy cows (141 ± 27 d in milk, 35.3 ± 2.8 kg of milk/d, parity 2 or 3) were individually housed in environmental chambers and randomly assigned to 1 of 2 treatments: inorganic Se supplementation (sodium selenite; SS; 0.3 mg of Se/kg of dry matter; n = 4) or HMSeBA supplementation (0.3 mg of Se/kg of dry matter; n = 4). The trial was divided into 3 continuous periods: a covariate period (9 d), a thermal neutral (TN) period (28 d), and a HS period (9 d). During the covariate and TN periods, all cows were housed in TN conditions (20°C, 55% humidity). During HS, all cows were exposed to cyclical HS conditions (32–36°C, 40% humidity). All cows were fed SS during the covariate period, and dietary treatments were implemented during the TN and HS periods. During HS, cows fed HMSeBA had increased Se concentrations in serum and milk, and total Se milk-to-serum concentration ratio compared with SS controls. Superoxide dismutase activity did not differ between Se sources, but we noted a treatment by day interaction in glutathione peroxidase activity as HS progressively reduced it in SS controls, whereas it was maintained in HMSeBA cows. Supplementation with HMSeBA increased total antioxidant capacity and decreased malondialdehyde, hydrogen peroxide, and nitric oxide serum concentrations compared with SS-fed controls. We found no treatment effects on rectal temperature, respiratory rate, or dry matter intake. Supplementing HMSeBA tended to increase milk yield and decrease milk fat percentage. No other milk composition parameters differed between treatments. We observed no treatment effects detected on blood biochemistry, except for a lower alanine aminotransferase activity in HMSeBA-fed cows. These results demonstrate that HMSeBA supplementation decreases some parameters of HS-induced oxidative stress.
CITATION STYLE
Sun, L. L., Gao, S. T., Wang, K., Xu, J. C., Sanz-Fernandez, M. V., Baumgard, L. H., & Bu, D. P. (2019). Effects of source on bioavailability of selenium, antioxidant status, and performance in lactating dairy cows during oxidative stress-inducing conditions. Journal of Dairy Science, 102(1), 311–319. https://doi.org/10.3168/jds.2018-14974
Mendeley helps you to discover research relevant for your work.