Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints

35Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

Abstract

FEM simulations of PbSn solder fatigue damage are used to evaluate seven cities that represent a variety of climatic zones. It is shown that the rate of solder fatigue damage is not ranked with the cities' climate designations. For an accurate ranking, the mean maximum daily temperature, daily temperature change and a characteristic of clouding events are all required. A physics-based empirical equation is presented that accurately calculates solder fatigue damage according to these three factors. An FEM comparison of solder damage accumulated through service and thermal cycling demonstrates the number of cycles required for an equivalent exposure. For an equivalent 25-year exposure, the number of thermal cycles (- 40 °C to 85 °C) required ranged from roughly 100 to 630 for the cities examined. It is demonstrated that increasing the maximum cycle temperature may significantly reduce the number of thermal cycles required for an equivalent exposure.

Cite

CITATION STYLE

APA

Bosco, N., Silverman, T. J., & Kurtz, S. (2016). Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints. Microelectronics Reliability, 62, 124–129. https://doi.org/10.1016/j.microrel.2016.03.024

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free