The silencing of carotenoid β-hydroxylases by RNA interference in different maize genetic backgrounds increases the β carotene content of the endosperm

24Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

Abstract

Maize (Zea mays L.) is a staple food in many parts of Africa, but the endosperm generally contains low levels of the pro-vitamin A carotenoid β-carotene, leading to vitamin A deficiency disease in populations relying on cereal-based diets. However, maize endosperm does accumulate high levels of other carotenoids, including zeaxanthin, which is derived from β-carotene via two hydroxylation reactions. Blocking these reactions could therefore improve the endosperm β-carotene content. Accordingly, we used RNA interference (RNAi) to silence the endogenous ZmBCH1 and ZmBCH2 genes, which encode two non-heme di-iron carotenoid β-hydroxylases. The genes were silenced in a range of maize genetic backgrounds by introgressing the RNAi cassette, allowing us to determine the impact of ZmBCH1/ZmBCH2 silencing in diverse hybrids. The β-carotene content of the endosperm increased substantially in all hybrids in which ZmBCH2 was silenced, regardless of whether or not ZmBCH1 was silenced simultaneously. However, the β-carotene content did not change significantly in C17 hybrids (M7 × C17 and M13 × C17) compared to C17 alone, because ZmBCH2 is already expressed at negligible levels in the C17 parent. Our data indicate that ZmBCH2 is primarily responsible for the conversion of β-carotene to zeaxanthin in maize endosperm.

Cite

CITATION STYLE

APA

Berman, J., Zorrilla-López, U., Sandmann, G., Capell, T., Christou, P., & Zhu, C. (2017). The silencing of carotenoid β-hydroxylases by RNA interference in different maize genetic backgrounds increases the β carotene content of the endosperm. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/ijms18122515

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free