The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters

138Citations
Citations of this article
118Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Studies in Saccharomyces cerevisiae indicate the histone variant H2A.Z is deposited at promoters by the chromatin remodeling protein Swr1 and plays a critical role in the regulation of transcription. In higher eukaryotes, however, little is known about the distribution, method of deposition, and function of H2A.Z at promoters. Using biochemical studies, we demonstrated previously that SRCAP (SNF-2-related CREB-binding protein activator protein), the human ortholog of Swr1, could catalyze deposition of H2A.Z into nucleosomes. To address whether SRCAP directs H2A.Z deposition in vivo, promoters targeted by SRCAP were identified by a chromatin immunoprecipitation (ChIP)-on-chip assay. ChIP assays on a subset of these promoters confirmed the presence of SRCAP on inactive and active promoters. The highest levels of SRCAP were observed on the active SP-1, G3BP, and FAD synthetase promoters. Detailed analyses of these promoters indicate sites of SRCAP binding overlap or occur adjacent to the sites of H2A.Z deposition. Knockdown of SRCAP levels using siRNA resulted in loss of SRCAP at these promoters, decreased deposition of H2A.Z and acetylated H2A.Z, and a decrease in levels of SP-1, G3BP, and FAD synthetase mRNA. Thus, these studies provide the first evidence that SRCAP is recruited to promoters and is critical for the deposition of H2A.Z. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Wong, M. M., Cox, L. K., & Chrivia, J. C. (2007). The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. Journal of Biological Chemistry, 282(36), 26132–26139. https://doi.org/10.1074/jbc.M703418200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free