We develop a global-scale P wave velocity model (LLNL-G3Dv3) designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The model provides a new image of Earth's interior, but the underlying practical purpose of the model is to provide enhanced seismic event location capabilities. The LLNL-G3Dv3 model is based on ∼2.8 million P and Pn arrivals that are re-processed using our global multiple-event locator called Bayesloc. We construct LLNL-G3Dv3 within a spherical tessellation based framework, allowing for explicit representation of undulating and discontinuous layers including the crust and transition zone layers. Using a multiscale inversion technique, regional trends as well as fine details are captured where the data allow. LLNL-G3Dv3 exhibits large-scale structures including cratons and superplumes as well numerous complex details in the upper mantle including within the transition zone. Particularly, the model reveals new details of a vast network of subducted slabs trapped within the transition beneath much of Eurasia, including beneath the Tibetan Plateau. We demonstrate the impact of Bayesloc multiple-event location on the resulting tomographic images through comparison with images produced without the benefit of multiple-event constraints (single-event locations). We find that the multiple-event locations allow for better reconciliation of the large set of direct P phases recorded at 0-97 distance and yield a smoother and more continuous image relative to the single-event locations. Travel times predicted from a 3-D model are also found to be strongly influenced by the initial locations of the input data, even when an iterative inversion/relocation technique is employed. © 2012. American Geophysical Union. All Rights Reserved.
CITATION STYLE
Simmons, N. A., Myers, S. C., Johannesson, G., & Matzel, E. (2012). LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. Journal of Geophysical Research: Solid Earth, 117(10). https://doi.org/10.1029/2012JB009525
Mendeley helps you to discover research relevant for your work.