Resolving coiled shapes reveals new reorientation behaviors in C. elegans

43Citations
Citations of this article
102Readers
Mendeley users who have this article in their library.

Abstract

We exploit the reduced space of C. elegans postures to develop a novel tracking algorithm which captures both simple shapes and also self-occluding coils, an important, yet unexplored, component of 2D worm behavior. We apply our algorithm to show that visually complex, coiled sequences are a superposition of two simpler patterns: the body wave dynamics and a head-curvature pulse. We demonstrate the precise Ω-turn dynamics of an escape response and uncover a surprising new dichotomy in spontaneous, large-amplitude coils; deep reorientations occur not only through classical Ω-shaped postures but also through larger postural excitations which we label here as δ-turns. We find that omega and delta turns occur independently, suggesting a distinct triggering mechanism, and are the serpentine analog of a random left-right step. Finally, we show that omega and delta turns occur with approximately equal rates and adapt to food-free conditions on a similar timescale, a simple strategy to avoid navigational bias.

Cite

CITATION STYLE

APA

Broekmans, O. D., Rodgers, J. B., Ryu, W. S., & Stephens, G. J. (2016). Resolving coiled shapes reveals new reorientation behaviors in C. elegans. ELife, 5(September). https://doi.org/10.7554/eLife.17227

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free