High-performance extruded aluminum alloys with complex textures suffer significant dimension variation under environmental temperature fluctuations, dramatically decreasing the pre-cision of navigation systems. This research mainly focuses on the effect of the texture of extruded pure aluminum on its dimensional stability after various annealing processes. The result reveals that a significant increment in the area fraction of recrystallized grains with <100> orientation and a decrement in the area fraction of grains with <111> orientation were found with increasing annealing temperature. Moreover, with the annealing temperature increasing from 150 °C to 400 °C, the residual plastic strain after twelve thermal cycles with a temperature range of 120 °C was changed from −1.6 × 10−5 to −4.5 × 10−5. The large amount of equiaxed grains with <100> orientation was formed in the microstructure of the extruded pure aluminum and the average grain size was de-creased during thermal cycling. The area fraction of grain with <100> crystallographic orientation of the sample annealed at 400 °C after thermal cycling was 30.9% higher than annealed at 350 °C (23.7%) or at 150 °C (18.7%). It is attributed to the increase in the proportion of recrystallization grains with <100> direction as the annealing temperature increases, provided more nucleation sites for the formation of fine equiaxed grains with <100> orientation. The main orientation of the texture was rotated from parallel to <111> to parallel to <100> after thermal cycling. The change in the orientation of grains contributed to a change in interplanar spacing, which explains the change in the dimension along the extrusion direction during thermal cycling.
CITATION STYLE
Fu, L., Wu, G., Zhou, C., Xiu, Z., Yang, W., & Qiao, J. (2021). Effect of microstructure on the dimensional stability of extruded pure aluminum. Materials, 14(17). https://doi.org/10.3390/ma14174797
Mendeley helps you to discover research relevant for your work.