Recently, several research groups have demonstrated that several haplotypes may cause embryonic loss in the homozygous state. Up to now, carriers of genetic disorders were often excluded from mating, resulting in a decrease of genetic gain and a reduced number of sires available for the breeding program. Ongoing research is very likely to identify additional genetic defects causing embryonic loss and calf mortality by genotyping a large proportion of the female cattle population and sequencing key ancestors. Hence, a clear demand is present to develop a method combining selection against recessive defects (e.g., Holstein haplotypes HH1-HH5) with selection for economically beneficial traits (e.g., polled) for mating decisions. Our proposed method is a genetic index that accounts for the allele frequencies in the population and the economic value of the genetic characteristic without excluding carriers from breeding schemes. Fertility phenotypes from routine genetic evaluations were used to determine the economic value per embryo lost. Previous research has shown that embryo loss caused by HH1 and HH2 occurs later than the loss for HH3, HH4, and HH5. Therefore, an economic value of €97 was used against HH1 and HH2 and €70 against HH3, HH4, and HH5. For polled, €7 per polled calf was considered. Minor allele frequencies of the defects ranged between 0.8 and 3.3%. The polled allele has a frequency of 4.1% in the German Holstein population. A genomic breeding program was simulated to study the effect of changing the selection criteria from assortative mating based on breeding values to selecting the females using the genetic index. Selection for a genetic index on the female path is a useful method to control the allele frequencies by reducing undesirable alleles and simultaneously increasing economical beneficial characteristics maintaining most of the genetic gain in production and functional traits. Additionally, we applied the genetic index to real data and found a decrease of the genetic trend for the birth years 1990 to 2006. Since 2010 the genetic index has increased due to a strong increase in the polled frequency. However, further investigation is needed to better understand the biology to determine the correct time of embryo loss and the economic value of fertility disorders.
CITATION STYLE
Segelke, D., Täubert, H., Reinhardt, F., & Thaller, G. (2016). Considering genetic characteristics in German Holstein breeding programs. Journal of Dairy Science, 99(1), 458–467. https://doi.org/10.3168/jds.2015-9764
Mendeley helps you to discover research relevant for your work.