Codonopsis lanceolata is a perennial smelly herbaceous plant and widely employed for the treatment of various lung cancer and inflammation. However, the anticancer substances in C. lanceolata and their underlying mechanisms had not been well clarified. In this study, six compounds were obtained from the water extracts of C. lanceolata polyacetylenes (CLP) and then identified as syringin, codonopilodiynoside A, lobetyol, isolariciresinol, lobetyolin, and atractylenolide III. Treatment with CLP remarkably suppressed the cell proliferation, colony formation, migration, and invasion of A549 cells. Synergistic effects of lobetyolin and lobetyol were equivalent to the antiproliferative activities of CLP, while other compounds did not have any inhibition on the viabilities of A549 cells. CLP also reduced the expression of Ras, PI3K, p-AKT, Bcl-2, cyclin D1, and CDK4 but increased the expression of Bax, GSK-3β, clv-caspase-3, and clv-caspase-9, which could be reversed by the PI3K activator 740YP. Furthermore, CLP retarded the growths of tumor and lung pathogenic bacteria in mice. It demonstrated that lobetyolin and lobetyol were the main antitumor compounds in C. lanceolata. CLP induced cell apoptosis of lung cancer cells via inactivation of the Ras/PI3K/AKT pathway and ameliorated lung dysbiosis, suggesting the therapeutic potentials for treating human lung cancer.
CITATION STYLE
Wang, M. C., Wu, Y. F., Yu, W. Y., Yu, B., & Ying, H. Z. (2022). Polyacetylenes from Codonopsis lanceolata Root Induced Apoptosis of Human Lung Adenocarcinoma Cells and Improved Lung Dysbiosis. BioMed Research International, 2022. https://doi.org/10.1155/2022/7713355
Mendeley helps you to discover research relevant for your work.