Theoretical study of structure, vibrational and electronic spectra of isomers of methyl-3-methoxy-2-propenoate

2Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

A systematic quantum mechanical study of the possible conformations, their relative stabilities, vibrational and electronic spectra and thermodynamic parameters of methyl-3-methoxy-2-propenoate has been reported for the electronic ground (S0) and first excited (S1) states using time-dependent and time-independent Density Functional Theory (DFT) and RHF methods in extended basis sets. Detailed studies have been restricted to the E-isomer, which is found to be substantiallymore stable than the Z-isomer. Four possible conformers c′Cc, c′Tc, t′Cc, t′Tc, of which the first two are most stable, have been identified in the S0 and S1 states. Electronic excitation to S1 state is accompanied with a reversal in the relative stability of the c′Cc and c′Tc conformers and a substantial reduction in the rotational barrier between them, as compared with the S0 state. Optimized geometries of these conformers in the S0 and S1 states are being reported. Based on suitably scaled RHF/6-31G** and DFT/6-311G** calculations, assignments have been provided to the fundamental vibrational bands of both these conformers in terms of frequency, form and intensity of vibrations and potential energy distribution across the symmetry coordinates in the S0 state. A complete interpretation of the electronic spectra of the conformers has been provided. © Central European Science Journals. All rights reserved.

Cite

CITATION STYLE

APA

Virdi, A., Gupta, V. P., & Sharma, A. (2004). Theoretical study of structure, vibrational and electronic spectra of isomers of methyl-3-methoxy-2-propenoate. Central European Journal of Chemistry, 2(3), 456–479. https://doi.org/10.2478/BF02476201

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free