The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo

66Citations
Citations of this article
151Readers
Mendeley users who have this article in their library.

Abstract

This study demonstrates that proper spatiotemporal expression and the physical assembly state of fibronectin (FN) matrix play key roles in the regulation of morphogenetic cell movements in vivo. We examine the progressive assembly and 3D fibrillar organization of FN and its role in regulating cell and tissue movements in Xenopus embryos. Expression of the 70 kD N-terminal fragment of FN blocks FN fibril assembly at gastrulation but not initial FN binding to integrins at the cell surface. We find that fibrillar FN is necessary to maintain cell polarity through oriented cell division and to promote epiboly, possibly through maintenance of tissue-surface tension. In contrast, FN fibrils are dispensable for convergence and extension movements required for axis elongation. Closure of the migratory mesendodermal mantle was accelerated in the absence of a fibrillar matrix. Thus, the macromolecular assembly of FN matrices may constitute a general regulatory mechanism for coordination of distinct morphogenetic movements. © 2008 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Rozario, T., Dzamba, B., Weber, G. F., Davidson, L. A., & DeSimone, D. W. (2009). The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Developmental Biology, 327(2), 386–398. https://doi.org/10.1016/j.ydbio.2008.12.025

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free