Analisis Topik Informasi Publik Media Sosial di Surabaya Menggunakan Pemodelan Latent Dirichlet Allocation (LDA)

  • Putra K
  • Kusumawardani R
N/ACitations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Radio Suara Surabaya sebagai salah satu radio di Kota Surabaya merupakan radio yang menerapkan format "radio News" dan informasi, dimana informasi yang sering di sampaikan antara lain kondisi lalu lintas, keamanan, dan seputar Kota Surabaya. Radio Suara Surabaya mengembangkan siaran interaktif berbasis jurnalistik masyarakat, dimana agasan ini melibatkan partisipasi warga dalam melaporkan peristiwa kepada penyiar radio yang sedang bertugas. Laporan masyarakat yang masuk kemudian disebarluaskan kembali baik oleh penyiar melalui siaran radio maupun oleh gatekeeper melalui media social yang dimiliki Radio Suara Surabaya, baik twitter dan Facebook untuk memberikan informasi kepada masyarakat. Tingginya jumlah laporan perhari yang masuk melalui media social dan beragamnya topik dari laporan tersebut menimbulkan kesulitan dalam mengidentifikasi suatu topik dari kumpulan laporan media social masyarakat dan menghabiskan banyak waktu jika dilakukan secara manual oleh manusia. Padahal, kumpulan laporan tersebut merupakan sumber data yang sangat berpotensi untuk memberikan informasi apa yang terjadi di Kota Surabaya. Dengan kondisi demikian, dibutuhkan suatu pemodelan topik yang mampu secara otomatis mengklasifikasikan pesan media social ke dalam topik-topik yang muncul dari hasil pemodelan. Pemodelan topik dilakukan dengan metode Latent Dirichlet Allocation (LDA), sebuah metode text mining untuk menemukan pola tertentu pada sebuah dokumen dengan menghasilkan beberapa macam topik yang berbeda. Eksperimen pemodelan topic dengan metode LDA menyimpulkan bahwa jumlah topik yang terdapat dalam pesan media social adalah 4 topik. Hasil eksperimen ini telah diuji secara mesin dengan nilai perplexity terbaik sebesar 213.41 dan diuji kemudahannya untuk diinterpretasi oleh manusia melalui uji koherensi topik yang terdiri dari word intrusion task dan topic intrusion task. Kesimpulan dari uji koherensi topik menyatakan bahwa model yang dihasilkan dengan metode LDA pada studi kasus ini dapat diinterpretasi manusia dengan baik.

Cite

CITATION STYLE

APA

Putra, K. B., & Kusumawardani, R. P. (2017). Analisis Topik Informasi Publik Media Sosial di Surabaya Menggunakan Pemodelan Latent Dirichlet Allocation (LDA). Jurnal Teknik ITS, 6(2). https://doi.org/10.12962/j23373539.v6i2.23205

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free