The kinetics of response to strong light have been examined in deeply shaded leaves of the tropical tree legume (Inga sp.) which have extraordinarily high levels of the α-xanthophyll lutein-epoxide that are co-located in pigment-protein complexes of the photosynthetic apparatus with the β-xanthophyll violaxanthin. As in other species, rapidly reversible photoprotection (measured as non-photochemical chlorophyll fluorescence quenching) is initiated within the time frame of sun-flecks (minutes), before detectable conversion of violaxanthin to antheraxanthin or zeaxanthin. Photoprotection is stabilized within hours of exposure to strong light by simultaneously engaging the reversible violaxanthin cycle and a slowly reversible conversion of lutein-epoxide to lutein. It is proposed that this lutein 'locks in' a primary mechanism of photoprotection during photoacclimation in this species, converting efficient light-harvesting antennae of the shade plant into potential excitation dissipating centres. It is hypothesized that lutein occupies sites L2 and V1 in light-harvesting chlorophyll protein complexes of photosystem II, facilitating enhanced photoprotection through the superior singlet and/or triplet chlorophyll quenching capacity of lutein.
CITATION STYLE
Matsubara, S., Naumann, M., Martin, R., Nichol, C., Rascher, U., Morosinotto, T., … Osmond, B. (2005). Slowly reversible de-epoxidation of lutein-epoxide in deep shade leaves of a tropical tree legume may “lock-in” lutein-based photoprotection during acclimation to strong light. In Journal of Experimental Botany (Vol. 56, pp. 461–468). https://doi.org/10.1093/jxb/eri012
Mendeley helps you to discover research relevant for your work.