Larix principis-rupprechtii is a native tree species in North China with a large distribution; and its harvested timbers can be used for producing wood products. This study focused on estimating and comparing carbon flows and carbon footprints of different harvested wood products (HWPs) from Larix principis-ruppechtii based on the life cycle analysis (from seedling cultivation to HWP final disposal). Based on our interviews and surveys, the system boundary in this study was divided into three processes: The forestry process, the manufacturing process, and the use and disposal process. By tracking carbon flows of HWPs along the entire life cycle, we found that, for one forest rotation period, a total of 26.81 tC/ha sequestered carbon was transferred into these HWPs, 66.2% of which were still stored in the HWP when the rotation period had ended; however, the HWP carbon storage decreased to 0.25 tC/ha (only 0.9% left) in the 100th year after forest plantation. The manufacturing process contributed more than 90% of the total HWP carbon footprint, but it was still smaller than the HWP carbon storage. In terms of the carbon storage and the carbon footprint, construction products had the largest net positive carbon balance compared to furniture and panel products. In addition, HWP are known to have a positive impact on global carbon mitigation because they can store parts of the sequestered carbon for a certain period of time and they have a substitution effect on carbon mitigation. Furthermore, there still exist great opportunities for carbon mitigation from HWPs through the use of cleaner energy and increasing the utilization efficiency of wood fuel.
CITATION STYLE
Lun, F., Liu, M., Zhang, D., Li, W., & Liu, J. (2016). Life cycle analysis of carbon flow and carbon footprint of harvested wood products of Larix principis-rupprechtii in China. Sustainability (Switzerland), 8(3). https://doi.org/10.3390/su8030247
Mendeley helps you to discover research relevant for your work.