Aims: Litter decomposition is a critical pathway linking the above- and belowground processes. However, factors underlying the local spatial variations in forest litter decomposition are still not fully addressed. We investigated leaf litter decomposition across contrasting forest stands in central China, with objective to determine the spatial variations and controlling factors in forest floor leaf litter decomposition in relation to changes in forest stands in a temperate forest ecosystem. Methods: Leaf litter decomposition was studied by using litterbag method across several typical forest stand types in Baotianman Nature Reserve, central China, including pure stands of Quercus aliena var. acuteserrata, Q. glandulifera var. brevipetiolata and Q. variabilis, respectively, and mixed pine/oak stands dominated by Pinus armandii and Q. aliena var. acuteserrata, as well as stands of pure Q. aliena var. acuteserrata trees ranging in stand age from ~40 to >160 years. Measurements were made on litter mass remaining and changes in litter chemistry during decomposition over a 2-year period, along with data collections on selective biotic and environmental factors. A reciprocal transplant experiment involving Q. aliena var. acuteserrata and Q. variabilis was concurrently carried out to test the occurrence of 'home-field advantage (HFA)' in local forests when only considering contrasting oak tree species. Correlation analyses and path analyses were performed to identify the dominant drivers and their relative contributions to variations in leaf litter decomposition. Important findings: Significant variations were found in the rate of leaf litter decomposition among stands of different tree species but not among stand age classes. The values of decay constant, k, varied from 0.62 in Q. aliena var. acuteserrata stands to 0.56 in Q. variabilis stands. The reciprocal litter transplant experiment showed that the rate of leaf litter decomposition was on average 5% slower in home-fields than on reciprocal sites. Path analysis identified litter acid-unhydrolyzable residue (AUR) to N ratio, soil microbial biomass carbon (MBC), soil pH and soil organic carbon (SOC) as most prominent factors controlling the rate of leaf litter decomposition, collectively accounting for 57.8% of the variations; AUR/N had the greatest negative effect on k value, followed by weaker positive effects of SOC and MBC. Our findings suggest that tree species plays a primary role in affecting forest floor leaf litter decomposition by determining the litter quality, with site environment being a secondary factor contributing to the local variations in leaf litter decomposition in this temperate forest ecosystem.
CITATION STYLE
Wang, J., You, Y., Tang, Z., Liu, S., & Sun, O. J. (2014). Variations in leaf litter decomposition across contrasting forest stands and controlling factors at local scale. Journal of Plant Ecology, 8(3), 261–272. https://doi.org/10.1093/jpe/rtu019
Mendeley helps you to discover research relevant for your work.