In order to improve the prediction accuracy of gas emission in the mining face, a method combining least absolute value convergence and selection operator (LASSO), whale optimization algorithm (WOA), and extreme gradient boosting (XGBoost) was proposed, along with the LASSO-WOA-XGBoost gas emission prediction model. Aiming at the monitoring data of gas emission in Qianjiaying mine, LASSO is used to perform feature selection on 13 factors that affect gas emission, and 9 factors that have a high impact on gas emission are screened out. The three main parameters of n_estimators, learning_rate, and max_depth in XGBoost are optimized through WOA, which solves the problem of difficult parameter adjustment due to the large number of parameters in the XGBoost algorithm and improves the prediction effect of the XGBoost algorithm. "When comparing PCA-BP, PCA-SVM, LASSO-XGBoost, and PCA-WOA-XGBoost prediction models, the results indicate that utilizing LASSO for feature selection is more effective in enhancing model prediction accuracy than employing principal component analysis (PCA) for dimensionality reduction." The average absolute error of the LASSO-WOA-XGBoost model is 0.1775, and the root mean square error is 0.2697, which is the same as other models. Compared with the four prediction models, the LASSO-WOA-XGBoost prediction model reduced the mean absolute error by 7.43%, 8.81%, 4.16%, and 9.92%, respectively, and the root mean square error was reduced by 0.24%, 1.13%, 5.81%, and 8.78%. It provides a new method for predicting the gas emission from the mining face in actual mine production.
CITATION STYLE
Song, W., Han, X., & Qi, J. (2023). Prediction of Gas Emission in the Working Face Based on LASSO-WOA-XGBoost. Atmosphere, 14(11). https://doi.org/10.3390/atmos14111628
Mendeley helps you to discover research relevant for your work.