A Sublime Technique to Solve DNA-Repair Model

  • et al.
N/ACitations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Deoxyribonucleic acid (DNA) is an essential macromolecule for all known varieties of life and its damage is a life-threatening structure. The DNA double-strand breaks (DSBs) are considered as one of the most rigorous kinds of DNA damage and an error in its repairing mechanism stimulates cancer and also causes lethality in cells with various genetic disorders. In this article, we have exhibited a numerical solution of an ordinary differential equation based biological model to overcome the error for estimating the average number of DSBs per cell time. This model is called DNA repair Model (DRM) and to solve this model a Modified Adomian decomposition method with new polynomials (MADMNP) is applied. The convergence of the aforesaid method is established and the order of error is also dissertated. To solve DRM, this method provides an improved scheme to estimate the average number of DSBs per cell time in comparison to Adomain decomposition method (ADM) and Laplace ADM with Pad`e approximation (LADM-Pad`e). In this respect, a comparison table and a two-dimensional comparison graph are provided by considering a numerical example.

Cite

CITATION STYLE

APA

Arya*, M., Ujlayan*, A., & Yadav, M. (2020). A Sublime Technique to Solve DNA-Repair Model. International Journal of Recent Technology and Engineering (IJRTE), 8(6), 3339–3343. https://doi.org/10.35940/ijrte.f8616.038620

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free