Distributed learning: a reliable privacy-preserving strategy to change multicenter collaborations using AI

21Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Purpose: The present scoping review aims to assess the non-inferiority of distributed learning over centrally and locally trained machine learning (ML) models in medical applications. Methods: We performed a literature search using the term “distributed learning” OR “federated learning” in the PubMed/MEDLINE and EMBASE databases. No start date limit was used, and the search was extended until July 21, 2020. We excluded articles outside the field of interest; guidelines or expert opinion, review articles and meta-analyses, editorials, letters or commentaries, and conference abstracts; articles not in the English language; and studies not using medical data. Selected studies were classified and analysed according to their aim(s). Results: We included 26 papers aimed at predicting one or more outcomes: namely risk, diagnosis, prognosis, and treatment side effect/adverse drug reaction. Distributed learning was compared to centralized or localized training in 21/26 and 14/26 selected papers, respectively. Regardless of the aim, the type of input, the method, and the classifier, distributed learning performed close to centralized training, but two experiments focused on diagnosis. In all but 2 cases, distributed learning outperformed locally trained models. Conclusion: Distributed learning resulted in a reliable strategy for model development; indeed, it performed equally to models trained on centralized datasets. Sensitive data can get preserved since they are not shared for model development. Distributed learning constitutes a promising solution for ML-based research and practice since large, diverse datasets are crucial for success.

Cite

CITATION STYLE

APA

Kirienko, M., Sollini, M., Ninatti, G., Loiacono, D., Giacomello, E., Gozzi, N., … Chiti, A. (2021, November 1). Distributed learning: a reliable privacy-preserving strategy to change multicenter collaborations using AI. European Journal of Nuclear Medicine and Molecular Imaging. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00259-021-05339-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free