Coupled interactions analysis of a floating tidal current power station in uniform flow

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

For a floating tidal current power station moored in the sea, the mutual interactions between the carrier and the turbine are pretty complex. Current simulation methods based on potential flow theory could not consider the complicated viscous effects between the carrier motion and rotor rotation. To accurately account for the viscous effect, developing a different numerical simulation method based on computational fluid dynamics is necessary. This paper deals with a moored FTCPS (floating tidal current power station) with 6-degree-of-freedom motion in uniform flow based on dynamic fluid body interactions (DFBI) method. Results showed that the blockage effect caused by the columns would increase the average power output of the turbine, while the power output fluctuation also increased. When the carrier is individually moored in the sea, the motion response of the carrier is pretty small, and the carrier is obviously trimming by the bow. However, when the turbine is mounted on the carrier, the carrier motion response is simple harmonic. The motion response frequency of the carrier is in relation to the rotation frequency of the turbine.

Cite

CITATION STYLE

APA

Hu, C., Tang, C., Yuwen, C., & Ma, Y. (2021). Coupled interactions analysis of a floating tidal current power station in uniform flow. Journal of Marine Science and Engineering, 9(9). https://doi.org/10.3390/jmse9090958

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free