Walking is one of the most common modes of terrestrial locomotion for humans. When a person walks, there is a pattern in it, and it is known as gait. Gait analysis is used in sports and healthcare. We can analyze this gait in different ways, like using video captured by the surveillance cameras or depth image cameras in the lab environment. It also can be recognized by wearable sensors. e.g., accelerometer, force sensors, gyroscope, flexible goniometer, magneto resistive sensors, electromagnetic tracking system, force sensors, and electromyography (EMG). Analysis through these sensors required a lab condition, or users must wear these sensors. For detecting abnormality in gait action of a human, we need to incorporate the sensors separately. Understanding a regular gait vs. abnormal gait may give insights to the health condition of the subject using the smart wearable technologies. Therefore, in this paper, we proposed a way to analyze abnormal human gait through smartphone sensors. We can track down person's gait using sensors of these intelligent wearable devices. To do the stratification of the gait of the subjects, we have adopted five machine learning algorithms with addition a deep learning algorithm. The advantages of the traditional classification are analyzed and compared among themselves. After rigorous performance analysis we found support vector machine (SVM) showing 96% accuracy, highest among the tradition classifiers. 70%, 84%, and 95% accuracy is obtained by the logistic regression, Naïve Bayes, and k-Nearest Neighbor (kNN) classifiers, respectively. As per the state-of-the art, deep learning classifiers has been proven to outperform the traditional classifiers in similar binary classification problems. We have considered the scenario and applied the 2D convolutional neural network (2D-CNN) classification algorithm, which outperformed the other algorithms showing accuracy of 98%. The model can be optimized and can be integrated with the other sensors to be utilized in the mobile wearable devices.
CITATION STYLE
Tasjid, M. S., & Marouf, A. A. (2021). Leveraging Smartphone Sensors for Detecting Abnormal Gait for Smart Wearable Mobile Technologies. International Journal of Interactive Mobile Technologies, 15(24), 167–175. https://doi.org/10.3991/IJIM.V15I24.25891
Mendeley helps you to discover research relevant for your work.