Crossings, Motzkin paths and moments

5Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Kasraoui, Stanton and Zeng, and Kim, Stanton and Zeng introduced certain q-analogues of Laguerre and Charlier polynomials. The moments of these orthogonal polynomials have combinatorial models in terms of crossings in permutations and set partitions. The aim of this article is to prove simple formulae for the moments of the q-Laguerre and the q-Charlier polynomials, in the style of the TouchardRiordan formula (which gives the moments of some q-Hermite polynomials, and also the distribution of crossings in matchings). Our method mainly consists of the enumeration of weighted Motzkin paths, which are naturally associated with the moments. Some steps are bijective, in particular, we describe a decomposition of paths which generalises a previous construction of Penaud for the case of the TouchardRiordan formula. There are also some non-bijective steps using basic hypergeometric series, and continued fractions or, alternatively, functional equations. © 2011 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Josuat-Verègs, M., & Rubey, M. (2011). Crossings, Motzkin paths and moments. Discrete Mathematics, 311(18–19), 2064–2078. https://doi.org/10.1016/j.disc.2011.05.019

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free