The rate of convergence for the cyclic projections algorithm I: Angles between convex sets

31Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

The cyclic projections algorithm is an important method for determining a point in the intersection of a finite number of closed convex sets in a Hilbert space. That is, for determining a solution to the "convex feasibility" problem. We study the rate of convergence for the cyclic projections algorithm. The notion of angle between convex sets is defined, which generalizes the angle between linear subspaces. The rate of convergence results are described in terms of these angles. © 2006 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Deutsch, F., & Hundal, H. (2006). The rate of convergence for the cyclic projections algorithm I: Angles between convex sets. Journal of Approximation Theory, 142(1), 36–55. https://doi.org/10.1016/j.jat.2006.02.005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free