Apparent Opportunities and Hidden Pitfalls: The Conflicting Results of Restoring NRF2-Regulated Redox Metabolism in Friedreich’s Ataxia Pre-Clinical Models and Clinical Trials

6Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Friedreich’s ataxia (FRDA) is an autosomal, recessive, inherited neurodegenerative disease caused by the loss of activity of the mitochondrial protein frataxin (FXN), which primarily affects dorsal root ganglia, cerebellum, and spinal cord neurons. The genetic defect consists of the trinucleotide GAA expansion in the first intron of FXN gene, which impedes its transcription. The resulting FXN deficiency perturbs iron homeostasis and metabolism, determining mitochondrial dysfunctions and leading to reduced ATP production, increased reactive oxygen species (ROS) formation, and lipid peroxidation. These alterations are exacerbated by the defective functionality of the nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor acting as a key mediator of the cellular redox signalling and antioxidant response. Because oxidative stress represents a major pathophysiological contributor to FRDA onset and progression, a great effort has been dedicated to the attempt to restore the NRF2 signalling axis. Despite this, the beneficial effects of antioxidant therapies in clinical trials only partly reflect the promising results obtained in preclinical studies conducted in cell cultures and animal models. For these reasons, in this critical review, we overview the outcomes obtained with the administration of various antioxidant compounds and critically analyse the aspects that may have contributed to the conflicting results of preclinical and clinical studies.

Cite

CITATION STYLE

APA

Tiberi, J., Segatto, M., Fiorenza, M. T., & La Rosa, P. (2023, May 1). Apparent Opportunities and Hidden Pitfalls: The Conflicting Results of Restoring NRF2-Regulated Redox Metabolism in Friedreich’s Ataxia Pre-Clinical Models and Clinical Trials. Biomedicines. MDPI. https://doi.org/10.3390/biomedicines11051293

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free