Brassica rapa grows as a wild and weedy species throughout the world and is the most likely recipient of transgenes from GM oilseed rape. For transgene introgression to occur, the critical step which must be realized, is the formation of an F1 hybrid. Concerns exist that hybrid populations could be more vigorous and competitive compared to the parental species. This study examines the effect of simulated herbivory and interspecific competition on the vegetative and reproductive performance of non-transgenic F1 hybrids and their parental lines. Several vegetative and reproductive performance measures were used to determine the effect of simulated herbivory and competition on the Brassica lines, including leaf length and biomass for herbivory and seedling height and biomass for competition. For defoliation experiments, B. rapa showed little response in terms of leaf length but B. napus and the F1 hybrid responded negatively. Brassica rapa showed elevated biomass responses, but B. napus and the hybrid demonstrated negative responses to defoliation. Defoliation at the cotyledon stage had a slight effect upon final biomass with the F1 hybrid performing significantly worse than B. napus, although seed counts were not significantly different. For the series of competition experiments, hybrids seemed to be more similar to B. rapa in terms of early seedling growth and reproductive measures. The underperformance of hybrid plants when challenged by herbivory and competition, could potentially decrease survivorship and explain the rarity of hybrids in field surveys. However, should transgene introgression occur, the dynamics of hybrids could change radically thus increasing the risk of gene flow from a transgenic oilseed rape crop to the wild recipient. © ISBR, EDP Sciences, 2006.
CITATION STYLE
Sutherland, J. P., Justinova, L., & Poppy, G. M. (2006). The responses of crop - Wild Brassica hybrids to simulated herbivory and interspecific competition: Implications for transgene introgression. Environmental Biosafety Research, 5(1), 15–25. https://doi.org/10.1051/ebr:2006011
Mendeley helps you to discover research relevant for your work.