Artificial intelligence (AI) can contribute to the management of a data driven simulation system, in particular with regard to adaptive selection of data and refinement of the model on which the simulation is based. We consider two different classes of intelligent agent that can control a data driven simulation: (a) an autonomous agent using internal simulation to test and refine a model of its environment and (b) an assistant agent managing a data-driven simulation to help humans understand a complex system (assisted model-building). In the first case the agent is situated in its environment and can use its own sensors to explore the data sources. In the second case, the agent has much less independent access to data and may have limited capability to refine the model on which the simulation is based. This is particularly true if the data contains subjective statements about the human view of the world, such as in the social sciences. For complex systems involving human actors, we propose an architecture in which assistant agents cooperate with autonomous agents to build a more complete and reliable picture of the observed system. © Springer-Verlag Berlin Heidelberg 2006.
CITATION STYLE
Kennedy, C., & Theodoropoulos, G. (2006). Intelligent management of data driven simulations to support model building in the social sciences. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 3993 LNCS-III, pp. 562–569). Springer Verlag. https://doi.org/10.1007/11758532_74
Mendeley helps you to discover research relevant for your work.