Skip to content

A new search pattern in multiple residue method (MRM) and its importance in the cryptanalysis of the RSA

0Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This paper presents a cryptanalysis attack on the RSA cryptosystem. The method, Multiple Residue Method (MRM), makes use of an algorithm which determines the value of ϕ (n) and hence, for a given modulus n where n = p × q, the prime factors can be uncovered. This algorithm calculates and stores all possible residues of p, q and (p + q) in different moduli. It then applies the Chinese Remainder Theorem (CRT) to different combinations of residues until the correct value is calculated, [6]. Further properties in relation to this structure show that improvements in the search process, within the residue of all parameters involved, can be effectively achieved. Besides, it has been established that the security of the RSA is no greater than the difficulty of factoring the modulus n into a product of two secret primes p and q. However, the MRM approaches the factorisation problem from a different angle. This method is aimed at finding towards the ϕ (n) in O(2− j × n), where j is the number of prime moduli. It may also be directed towards the computation of the sum(p + q) and, in the realistic case for the RSA, reduces to O(2− j × (Formula-presented)).

Cite

CITATION STYLE

APA

Tabatabaian, S. J., Ikeshiro, S., Gumussoy, M., & Dhanda, M. S. (2001). A new search pattern in multiple residue method (MRM) and its importance in the cryptanalysis of the RSA. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2260, pp. 378–386). Springer Verlag. https://doi.org/10.1007/3-540-45325-3_35

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free