Tissue-Specific Strategies of the Very-Long Chain Acyl-CoA Dehydrogenase-Deficient (VLCAD-/-) Mouse to Compensate a Defective Fatty Acid β-Oxidation

Citations of this article
Mendeley users who have this article in their library.


Very long-chain acyl-CoA dehydrogenase (VLCAD)-deficiency is the most common long-chain fatty acid oxidation disorder presenting with heterogeneous phenotypes. Similar to many patients with VLCADD, VLCAD-deficient mice (VLCAD-/-) remain asymptomatic over a long period of time. In order to identify the involved compensatory mechanisms, wild-type and VLCAD-/- mice were fed one year either with a normal diet or with a diet in which medium-chain triglycerides (MCT) replaced long-chain triglycerides, as approved intervention in VLCADD. The expression of the mitochondrial long-chain acyl-CoA dehydrogenase (LCAD) and medium-chain acyl-CoA dehydrogenase (MCAD) was quantified at mRNA and protein level in heart, liver and skeletal muscle. The oxidation capacity of the different tissues was measured by LC-MS/MS using acyl-CoA substrates with a chain length of 8 to 20 carbons. Moreover, in white skeletal muscle the role of glycolysis and concomitant muscle fibre adaptation was investigated. In one year old VLCAD-/- mice MCAD and LCAD play an important role in order to compensate deficiency of VLCAD especially in the heart and in the liver. However, the white gastrocnemius muscle develops alternative compensatory mechanism based on a different substrate selection and increased glucose oxidation. Finally, the application of an MCT diet over one year has no effects on LCAD or MCAD expression. MCT results in the VLCAD-/- mice only in a very modest improvement of medium-chain acyl-CoA oxidation capacity restricted to cardiac tissue. In conclusion, VLCAD-/- mice develop tissue-specific strategies to compensate deficiency of VLCAD either by induction of other mitochondrial acyl-CoA dehydrogenases or by enhancement of glucose oxidation. In the muscle, there is evidence of a muscle fibre type adaptation with a predominance of glycolytic muscle fibres. Dietary modification as represented by an MCT-diet does not improve these strategies long-term. © 2012 Tucci et al.




Tucci, S., Herebian, D., Sturm, M., Seibt, A., & Spiekerkoetter, U. (2012). Tissue-Specific Strategies of the Very-Long Chain Acyl-CoA Dehydrogenase-Deficient (VLCAD-/-) Mouse to Compensate a Defective Fatty Acid β-Oxidation. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0045429

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free