A hybrid approach for recovering high-resolution temporal gravity fields from satellite laser ranging

35Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A new approach to recover time-variable gravity fields from satellite laser ranging (SLR) is presented. It takes up the concept of lumped coefficients by representing the temporal changes of the Earth’s gravity field by spatial patterns via combinations of spherical harmonics. These patterns are derived from the GRACE mission by decomposing the series of monthly gravity field solutions into empirical orthogonal functions (EOFs). The basic idea of the approach is then to use the leading EOFs as base functions in the gravity field modelling and to adjust the respective scaling factors straightforward within the dynamic orbit computation; only for the lowest degrees, the spherical harmonic coefficients are estimated separately. As a result, the estimated gravity fields have formally the same spatial resolution as GRACE. It is shown that, within the GRACE time frame, both the secular and the seasonal signals in the GRACE time series are reproduced with high accuracy. In the period prior to GRACE, the SLR solutions are in good agreement with other techniques and models and confirm, for instance, that the Greenland ice sheet was stable until the late 1990s. Further validation is done with the first monthly fields from GRACE Follow-On, showing a similar agreement as with GRACE itself. Significant differences to the reference data only emerge occasionally when zooming into smaller river basins with strong interannual mass variations. In such cases, the approach reaches its limits which are set by the low spectral sensitivity of the SLR satellites and the strong constraints exerted by the EOFs. The benefit achieved by the enhanced spatial resolution has to be seen, therefore, primarily in the proper capturing of the mass signal in medium or large areas rather than in the opportunity to focus on isolated spatial details.

Cite

CITATION STYLE

APA

Löcher, A., & Kusche, J. (2021). A hybrid approach for recovering high-resolution temporal gravity fields from satellite laser ranging. Journal of Geodesy, 95(1). https://doi.org/10.1007/s00190-020-01460-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free