Confocal endomicroscopy is an emerging imaging technology that has recently been introduced into the clinic to instantaneously collect "optical biopsies" in vivo with histology-like quality. Here, we demonstrate a fast scanner located in the distal end of a side-viewing instrument using a compact lens assembly with numerical aperture of 0.5 to achieve a working distance of 100 μm and field-of-view of 300 × 400 μm 2. The microelectromechanical systems (MEMS) mirror was designed based on the principle of parametric resonance and images at 5 frames per second. The instrument has a 4.2 mm outer diameter and 3 cm rigid length, and can pass through the biopsy channel of a medical endoscope. We achieved real time optical sections of NIR fluorescence with 0.87 μm lateral resolution, and were able to visualize in vivo binding of a Cy5.5-labeled peptide specific for EGFR to the cell surface of pre-cancerous colonocytes within the epithelium of dysplastic crypts in mouse colon. By performing targeted imaging with endomicroscopy, we can visualize molecular expression patterns in vivo that provide a biological basis for disease detection.
CITATION STYLE
Duan, X., Li, H., Zhou, J., Zhou, Q., Oldham, K. R., & Wang, T. D. (2016). Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope. Scientific Reports, 6. https://doi.org/10.1038/srep37315
Mendeley helps you to discover research relevant for your work.