Electrocatalytic Reduction of CO2 to C1 Compounds by Zn-Based Monatomic Alloys: A DFT Calculation

9Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Electrocatalytic reduction of carbon dioxide to produce usable products and fuels such as alkanes, alkenes, and alcohols, is a very promising strategy. Recent experiments have witnessed great advances in precisely controlling the synthesis of single atom alloys (SAAs), which exhibit unique catalytic properties different from alloys and nanoparticles. However, only certain precious metals, such as Pd or Au, can achieve this transformation. Here, the density functional theory (DFT) calculations were performed to show that Zn-based SAAs are promising electrocatalysts for the reduction of CO2 to C1 hydrocarbons. We assume that CO2 reduction in Zn-based SAAs follows a two-step continuous reaction: first Zn reduces CO2 to CO, and then newly generated CO is captured by M and further reduced to C1 products such as methane or methanol. This work screens seven stable alloys from 16 SAAs (M = Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, V, Mo, Ti, Cr). Among them, Pd@Zn (101) and Cu@Zn (101) are promising catalysts for CO2 reduction. The reaction mechanisms of these two SAAs are discussed in detail. Both of them convert CO2 into methane via the same pathway. They are reduced by the pathway: *CO2 → *COOH → *CO + H2O; *CO → *CHO → *CH2O → *CH3O → *O + CH4 → *OH + CH4 → H2O + CH4. However, their potential determination steps are different, i.e., *CO2 → *COOH (ΔG = 0.70 eV) for Cu@Zn (101) and *CO → *CHO (ΔG = 0.72 eV) for Pd@Zn, respectively. This suggests that Zn-based SAAs can reduce CO2 to methane with a small overpotential. The solvation effect is simulated by the implicit solvation model, and it is found that H2O is beneficial to CO2 reduction. These computational results show an effective monatomic material to form hydrocarbons, which can stimulate experimental efforts to explore the use of SAAs to catalyze CO2 electrochemical reduction to hydrocarbons.

Cite

CITATION STYLE

APA

Wang, Y., Zheng, M., Wang, X., & Zhou, X. (2022). Electrocatalytic Reduction of CO2 to C1 Compounds by Zn-Based Monatomic Alloys: A DFT Calculation. Catalysts, 12(12). https://doi.org/10.3390/catal12121617

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free