In recent years, rotary-wing unmanned aerial vehicles have been used in many areas. Rotary wing unmanned aerial vehicle (UAV) can carry different payloads according to their duties. For example; if they carry cameras, they are used for reconnaissance / surveillance, cargo if they carry cargo, agriculture if they carry pesticides, mapping if they carry an advanced camera and mapping system, and communication if they carry a base station or relay. Rotary-wing unmanned aerial vehicles are usually commanded to take off manually by a trained UAV operator. Before takeoff, the rotary-wing unmanned aerial vehicle is prepared for take-off by the UAV operator and this preparation takes approximately five minutes. It takes time for rotary-wing unmanned aerial vehicles to take off from the runway and reach their cruising speed, causing time loss in critical areas. A rotary-wing unmanned aerial vehicle launch assembly and a rotary-wing unmanned aerial vehicle with an opening mechanism that can open the thrust arms after launch and continue to fly can be the solution to this time loss. Rotary-wing drones capable of launching and without the intervention of the UAV operator will play an important role in emergency response and defense, where situational awareness is often required. For example; firefighters responding to fires can take advantage of the ability to quickly launch rotary-wing unmanned aerial vehicles from a stationary or moving fire truck. Thanks to the day / thermal camera on the launched rotary wing unmanned aerial vehicles, valuable information can be obtained about the progress of the fire and the damage caused by the fire. Thanks to rapid awareness, the fire can be intervened and fought faster. Similarly, military personnel can quickly deploy launchable rotary-wing drones for reconnaissance and surveillance and perform their duties. In order to be applicable to various types of missions, it is important that the rotary wing unmanned aerial vehicle be portable and low in volume. Since the launchable rotary-wing unmanned aerial vehicle proposed in the thesis has an arm release mechanism after launch, it can automatically open and generate thrust after launching its arms. In this way, it helps lower volume coverage before being launched. This also reduces air friction during launch. It can be deployed to autonomous systems effortlessly as it has closed package, mobile and self-arm management. Different mechanisms will be studied to create an efficient design. A mechanism that allows it to open its arms in a short time will be used in the self-arm-opening management design. Throwable rotary wing unmanned aerial vehicle and launch mechanism will be designed and 3D printers will be used for prototype.
CITATION STYLE
Gokbel, E., & Ersoy, S. (2021). Launchable rotary wing UAV designs and launch mechanism designs for rotary wing UAV. Journal of Mechatronics and Artificial Intelligence in Engineering, 2(2), 102–113. https://doi.org/10.21595/jmai.2021.22339
Mendeley helps you to discover research relevant for your work.