Interleukin-6-induced epithelial-mesenchymal transition through signal transducer and activator of transcription 3 in human cervical carcinoma

87Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

Abstract

Epithelial-mesenchymal transition (EMT) is an important process in the invasion and metastasis of human cervical carcinoma. The pro-inflammatory cytokine interleukin-6 (IL-6) has been shown as an EMT inducer in multiple carcinomas. However, whether the EMT program can be induced by IL-6 and the mechanisms underlying the IL-6-induced EMT in human cervical carcinoma remain to be determined. In this study, we show that IL-6 receptor (IL-6R) and signal transducer and activator of transcription 3 (Stat3) were highly expressed in human cervical squamous cell carcinoma (CSCC) tissues, and the expression of EMT markers was reversed in well-differentiated and poorly-differentiated human CSCC. Additional experiments showed that IL-6 exposure in cervical carcinoma cell lines induced IL-6R and Stat3 expression, markedly promoted cell growth, and altered cell morphology. The treatment of cervical carcinoma cell lines with IL-6 resulted in downregulation of E-Cadherin and upregulation of Vimentin. Importantly, knockdown of Stat3 significantly reversed the IL-6-induced EMT program, suggesting that Stat3 is necessary for IL-6-induced EMT in the progression of human cervical carcinoma. Moreover, Slug, a member of the Snail family of EMT regulators, was observed to be associated with the expression of Stat3. We concluded that IL-6 plays an important role through Stat3 in the EMT induction and can be a potential therapeutic target and biomarker for human cervical carcinoma.

Cite

CITATION STYLE

APA

Miao, J. W., Liu, L. J., & Huang, J. (2014). Interleukin-6-induced epithelial-mesenchymal transition through signal transducer and activator of transcription 3 in human cervical carcinoma. International Journal of Oncology, 45(1), 165–176. https://doi.org/10.3892/ijo.2014.2422

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free