Ceilometer detection can be used to determine cloud type based on cloud layer height. Satellite observations provide images of clouds' physical properties. During the summer and winter of 2017, Satellite Application Facility on support to Nowcasting/Very Short-Range Forecasting Meteosat Second Generation (SAFNWC/MSG) cloud type was compared to cloud base layers based upon a sky condition algorithm of Vaisala CL51 ceilometer and the BL-View applied range-variant smoothing backscatter profile at the National Atmospheric Observatory in Košetice, Czech Republic. This study investigated whether the larger measurement range of CL51 improved high cloud base detection and the effect of the range-variant smoothing on cloud base detection. The comparison utilized a multi-category contingency table wherein hit rate, false alarm ratio, frequency of bias, and proportion correct were evaluated. The accuracy of low-level and high cloud type detection by satellite was almost identical in both seasons compared to that using the sky condition algorithm. The occurrence of satellite high cloud detection was greatest when the ceilometer detected high cloud base above low and/or medium cloud base. The hit rate of high cloud detection increased significantly when the BL-View-produced cloud base layer was applied as a reference. We conclude that BL-View produces more accurate high cloud base detection.
CITATION STYLE
Šálek, M., & Szabó-Takács, B. (2019). Comparison of SAFNWC/MSG satellite cloud type with Vaisala CL51 ceilometer-detected cloud base layer using the sky condition algorithm and Vaisala BL-View software. Atmosphere, 10(6). https://doi.org/10.3390/atmos10060316
Mendeley helps you to discover research relevant for your work.