A Novel Method for Ground-Based Cloud Image Classification Using Transformer

12Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

In recent years, convolutional neural networks (CNNs) have achieved competitive performance in the field of ground-based cloud image (GCI) classification. Proposed CNN-based methods can fully extract the local features of images. However, due to the locality of the convolution operation, they cannot well establish the long-range dependencies between the images, and thus they cannot extract the global features of images. Transformer has been applied to computer vision with great success due to its powerful global modeling capability. Inspired by it, we propose a Transformer-based GCI classification method that combines the advantages of the CNN and Transformer models. Firstly, the CNN model acts as a low-level feature extraction tool to generate local feature sequences of images. Then, the Transformer model is used to learn the global features of the images by efficiently extracting the long-range dependencies between the sequences. Finally, a linear classifier is used for GCI classification. In addition, we introduce a center loss function to address the problem of the simple cross-entropy loss not adequately supervising feature learning. Our method is evaluated on three commonly used datasets: ASGC, CCSN, and GCD. The experimental results show that the method achieves 94.24%, 92.73%, and 93.57% accuracy, respectively, outperforming other state-of-the-art methods. It proves that Transformer has great potential to be applied to GCI classification tasks.

Cite

CITATION STYLE

APA

Li, X., Qiu, B., Cao, G., Wu, C., & Zhang, L. (2022). A Novel Method for Ground-Based Cloud Image Classification Using Transformer. Remote Sensing, 14(16). https://doi.org/10.3390/rs14163978

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free