Background: The model to predict the prognosis of resectable hepatocelluar carcinoma (HCC) has not been determined. Methods: Predictors were selected using Cox model. Nomograms were generated in the training set and validated in the validation set. The predictive ability of the nomogram was determined by concordance index and calibration curve. Results: Independent factors for overall survival including alpha-fetoprotein level (hazard ratio (HR):1.292), tumor size (HR:1.092), tumor number (HR:1.472), microvascular invasion (HR:1.660), neutrophil to lymphocyte count ratio (NLR) (HR:1.428), major vascular invasion (HR:2.485) and satellite lesions(HR:1.392) were selected into the nomogram for survival. The c-index in the training set and validation set were 0.767 and 0.719, respectively, which were statistically higher than those of the four conventional staging systems.(Barcelona Clinic Liver Cancer: 0.644 and 0.609; the seventh American Joint Committee on Cancer: 0.678 and 0.674; Cancer of the Liver Italian Program: 0.692 and 0.648; Hong Kong Liver Cancer: 0.689 and 0.639, p < 0.001 for all). A nomogram for predicting 3- and 5-year recurrence free survival was generated with the c-index of 0.746 for the training set and 0.718 for the validation set, respectively. Conclusions: We have generated nomograms predicting prognosis for HCC treated by hepatectomy with a higher predictive power.
CITATION STYLE
Shen, J., He, L., Li, C., Wen, T., Chen, W., Lu, C., … Yang, J. (2016). Prognostic nomograms for patients with resectable hepatocelluar carcinoma incorporating systemic inflammation and tumor characteristics. Oncotarget, 7(49), 80783–80793. https://doi.org/10.18632/oncotarget.13038
Mendeley helps you to discover research relevant for your work.