Seismic Landslide Susceptibility Assessment Using Newmark Displacement Based on a Dual-Channel Convolutional Neural Network

5Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Landslide susceptibility assessment (LSA) is an essential tool for landslide hazard warning. The selection of earthquake-related factors is pivotal for seismic LSA. In this study, Newmark displacement (Dn) is employed as the earthquake-related factor, providing a detailed representation of seismic characteristics. On the algorithmic side, a dual-channel convolutional neural network (CNN) model is built, and the last classification layer is replaced with two machine learning (ML) models to facilitate the extraction of deeper features related to landslide development. This research focuses on Beichuan County in Sichuan Province, China. Fifteen landslide predisposing factors, including hydrological, geomorphic, geological, vegetation cover, anthropogenic, and earthquake-related features, were extensively collected. The results demonstrate some specific issues. Dn outperforms conventional earthquake-related factors such as peak ground acceleration (PGA) and Arias intensity (Ia) in capturing seismic influence on landslide development. Under the same conditions, the OA improved by 5.55% and AUC improved by 0.055 compared to the PGA; the OA improved by 3.2% and AUC improved by 0.0327 compared to the Ia. The improved CNN outperforms ML models. Under the same conditions, the OA improved by 4.69% and AUC improved by 0.0467 compared to RF; the OA improved by 4.47% and AUC improved by 0.0447 compared to SVM. Additionally, historical landslides validate the reasonableness of the landslide susceptibility maps. The proposed method exhibits a high rate of overlap with the historical landslide inventory. The proportion of historical landslides in the very high and high susceptibility zones exceeds 87%. The method not only enhances accuracy but also produces a more fine-grained susceptibility map, providing a reliable basis for early warning of seismic landslides.

Cite

CITATION STYLE

APA

Li, Y., Ming, D., Zhang, L., Niu, Y., & Chen, Y. (2024). Seismic Landslide Susceptibility Assessment Using Newmark Displacement Based on a Dual-Channel Convolutional Neural Network. Remote Sensing, 16(3). https://doi.org/10.3390/rs16030566

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free