Prognostic models in coronary artery disease: Cox and network approaches

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Predictive assessment of the risk of developing cardiovascular diseases is usually provided by computational approaches centred on Cox models. The complex interdependence structure underlying clinical data patterns can limit the performance of Cox analysis and complicate the interpretation of results, thus calling for complementary and integrative methods. Prognostic models are proposed for studying the risk associated with patients with known or suspected coronary artery disease (CAD) undergoing vasodilator stress echocardiography, an established technique for CAD detection and prognostication. In order to complement standard Cox models, network inference is considered a possible solution to quantify the complex relationships between heterogeneous data categories. In particular, a mutual information network is designed to explore the paths linking patientassociated variables to endpoint events, to reveal prognostic factors and to identify the best possible predictors of death. Data from a prospective, multicentre, observational study are available from a previous study, based on 4313 patients (2532 men; 64 ± 11 years) with known (n=1547) or suspected (n=2766) CAD, who underwent high-dose dipyridamole (0.84mgkg−1 over 6 min) stress echocardiography with coronary flow reserve (CFR) evaluation of left anterior descending (LAD) artery by Doppler. The overall mortality was the only endpoint analysed by Cox models. The estimated connectivity between clinical variables assigns a complementary value to the proposed network approach in relation to the established Cox model, forinstance revealing connectivity paths. Depending on the use of multiple metrics, the constraints of regression analysis in measuring the association strength among clinical variables can be relaxed, and identification of communities and prognostic paths can be provided. On the basis of evidence from variousmodel comparisons, we show in this CAD study that there may be characteristic factors involved in prognostic stratification whose complexity suggests an exploration beyond the analysis provided by the still fundamental Cox approach.

Cite

CITATION STYLE

APA

Mora, A., Sicari, R., Cortigiani, L., Carpeggiani, C., Picano, E., & Capobianco, E. (2015). Prognostic models in coronary artery disease: Cox and network approaches. Royal Society Open Science, 2(2). https://doi.org/10.1098/rsos.140270

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free