Multipower variation for Brownian semistationary processes

41Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

In this paper we study the asymptotic behaviour of power and multipower variations of processes Y: Yt = ∫t-∞ g(t - s)σsW(ds) + Zt, where g : (0,∞)→R is deterministic, σ > 0 is a random process, W is the stochastic Wiener measure and Z is a stochastic process in the nature of a drift term. Processes of this type serve, in particular, to model data of velocity increments of a fluid in a turbulence regime with spot intermittency σ. The purpose of this paper is to determine the probabilistic limit behaviour of the (multi)power variations of Y as a basis for studying properties of the intermittency process σ. Notably the processes Y are in general not of the semimartingale kind and the established theory of multipower variation for semimartingales does not suffice for deriving the limit properties. As a key tool for the results, a general central limit theorem for triangular Gaussian schemes is formulated and proved. Examples and an application to the realised variance ratio are given. © 2011 ISI/BS.

Cite

CITATION STYLE

APA

Barndorff-Nielsen, O. E., Corcuera, J. M., & Podolskij, M. (2011). Multipower variation for Brownian semistationary processes. Bernoulli, 17(4), 1159–1194. https://doi.org/10.3150/10-BEJ316

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free