Machine learning and prediction-based resource management in IoT considering Qos

4Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Internet of Things (IoT) is one of the fast-growing technology paradigms used in every sectors, where in the Quality of Service (QoS) is a critical component in such systems and usage perspective with respect to ProSumers (producer and consumers). Most of the recent research works on QoS in IoT have used Machine Learning (ML) techniques as one of the computing methods for improved performance and solutions. The adoption of Machine Learning and its methodologies have become a common trend and need in every technologies and domain areas, such as open source frameworks, task specific algorithms and using AI and ML techniques. In this work we propose an ML based prediction model for resource optimization in the IoT environment for QoS provisioning. The proposed methodology is implemented by using a multi-layer neural network (MNN) for Long Short Term Memory (LSTM) learning in layered IoT environment. Here the model considers the resources like bandwidth and energy as QoS parameters and provides the required QoS by efficient utilization of the resources in the IoT environment. The performance of the proposed model is evaluated in a real field implementation by considering a civil construction project, where in the real data is collected by using video sensors and mobile devices as edge nodes. Performance of the prediction model is observed that there is an improved bandwidth and energy utilization in turn providing the required QoS in the IoT environment.

Cite

CITATION STYLE

APA

Bhaddurgatte, R. C., Vijaya Kumar, B. P., & Kusuma, S. M. (2019). Machine learning and prediction-based resource management in IoT considering Qos. International Journal of Recent Technology and Engineering, 8(2), 687–694. https://doi.org/10.35940/ijrte.B1705.078219

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free