In vitro toxicology of ambient particulate matter: Correlation of cellular effects with particle size and components

40Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.
Get full text

Abstract

High concentrations of airborne particulate matter (PM) have been associated with increased rates of morbidity and mortality among exposed populations. Although certain components of PM were suggested to influence these effects, no clear-cut correlation was determined thus far. One of the possible modes of action is the induction of oxidative stress by inhaled PM triggering inflammatory responses. Therefore, the in vitro formation of reactive oxygen species (ROS) in three cell lines in the presence of five subfractions of PM10, collected in Münster, Germany was investigated. The PM components chloride, nitrate, ammonium, sulfate, 68 chemical elements, and endotoxin were quantified. The highest concentration of endotoxin was found in particles of 0.42-1.2 μm aerodynamic diameters, and therefore probably subject to long-range transport. Intracellular ROS formation in three well established mammalian cell lines (CaCo2, human; MDCK, canine; RAW264.7, mouse) only correlated positively with particle size. The two smallest PM size fractions provoked the highest rise in ROS. However, the latter did not correlate with the concentration of any PM components investigated. The smallest PM size fractions significantly dominated the number of particles. Therefore, the particle number may be most effective in inducing oxidative stress in vitro. © 2011 Wiley Periodicals, Inc.

Cite

CITATION STYLE

APA

Kroll, A., Gietl, J. K., Wiesmüller, G. A., Günsel, A., Wohlleben, W., Schnekenburger, J., & Klemm, O. (2013). In vitro toxicology of ambient particulate matter: Correlation of cellular effects with particle size and components. Environmental Toxicology, 28(2), 76–86. https://doi.org/10.1002/tox.20699

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free