Symmetric matrices related to the Mertens function

4Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

In this paper, we explore a family of congruences over N* from which one builds a sequence of symmetric matrices related to the Mertens function. From the results of numerical experiments, we formulate a conjecture about the growth of the quadratic norm of these matrices, which implies the Riemann hypothesis. This suggests that matrix analysis methods may come to play a more important role in this classical and difficult problem. © 2009 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Cardinal, J. P. (2010). Symmetric matrices related to the Mertens function. Linear Algebra and Its Applications, 432(1), 161–172. https://doi.org/10.1016/j.laa.2009.07.035

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free