Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation

N/ACitations
Citations of this article
186Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Phytoremediation is considered as a novel environmental friendly technology, which uses plants to remove or immobilize heavy metals. The use of metal-resistant plant growth-promoting bacteria (PGPB) constitutes an important technology for enhancing biomass production as well as tolerance of the plants to heavy metals. In this study, we isolated twenty seven (NF1-NF27) chromium resistant bacteria. The bacteria were tested for heavy metals (Cr, Zn, Cu, Ni, Pb and Co) resistance, Cr(VI) reduction and PGPB characters (phosphate solubilization, production of IAA and siderophores). The results showed that the bacterial isolates resist to heavy metals and reduce Cr(VI), with varying capabilities. 37.14% of the isolates have the capacity of solubilizing phosphate, 28.57% are able to produce siderophores and all isolates have the ability to produce IAA. Isolate NF2 that showed high heavy metal resistance and plant growth promotion characteristics was identified by 16S rDNA sequence analysis as a strain of Cellulosimicrobium sp. Pot culture experiments conducted under greenhouse conditions showed that this strain was able to promote plant growth of alfalfa in control and in heavy metals (Cr, Zn and Cu) spiked soils and increased metal uptake by the plants. Thus, the potential of Cellulosimicrobium sp. for both bioremediation and plant growth promotion has significance in the management of environmental pollution.

Cite

CITATION STYLE

APA

Tirry, N., Tahri Joutey, N., Sayel, H., Kouchou, A., Bahafid, W., Asri, M., & El Ghachtouli, N. (2018). Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. Journal of Genetic Engineering and Biotechnology, 16(2), 613–619. https://doi.org/10.1016/j.jgeb.2018.06.004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free