Although the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is wreaking havoc and resulting in mortality and morbidity across the planet, novel treatments are urgently needed. Drug repurposing offers an innovative approach in this context. We report here new findings on the in silico potential of several antimalarial drugs for repurposing against COVID-19. We conducted analyses by docking the compounds against two SARS-CoV-2-specific targets: (1) the receptor binding domain spike protein and (2) the main protease of the virus (MPro) using the Schrödinger software. Importantly, the docking analysis revealed that doxycycline (DOX) showed the most effective binding to the spike protein of SARS-CoV-2, whereas halofantrine and mefloquine bound effectively with the main protease among the antimalarial drugs evaluated in the present study. The in silico approach reported here suggested that DOX could potentially be a good candidate for repurposing for COVID-19. In contrast, to decipher the actual potential of DOX and halofantrine against COVID-19, further in vitro and in vivo studies are called for. Drug repurposing warrants consideration as a viable research and innovation avenue as planetary health efforts to fight the COVID-19 continue.
CITATION STYLE
Sachdeva, C., Wadhwa, A., Kumari, A., Hussain, F., Jha, P., & Kaushik, N. K. (2020). In silico Potential of Approved Antimalarial Drugs for Repurposing against COVID-19. OMICS A Journal of Integrative Biology, 24(10), 568–580. https://doi.org/10.1089/omi.2020.0071
Mendeley helps you to discover research relevant for your work.