Biological systems consistently outperform autonomous systems governed by engineered algorithms in their ability to reactively avoid collisions. To better understand this discrepancy, a collision avoidance algorithm was applied to frames of digitized video trajectory data from bats, swallows and fish (Myotis velifer, Petrochelidon pyrrhonota and Danio aequipinnatus). Information available from visual cues, specifically relative position and velocity, was provided to the algorithm which used this information to define collision cones that allowed the algorithmto find a safe velocity requiring minimal deviation from the original velocity. The subset of obstacles provided to the algorithm was determined by the animal's sensing range in terms of metric and topological distance. The algorithmic calculated velocities showed good agreement with observed biological velocities, indicating that the algorithm was an informative basis for comparison with the three species and could potentially be improved for engineered applications with further study.
CITATION STYLE
Brace, N. L., Hedrick, T. L., Theriault, D. H., Fuller, N. W., Wu, Z., Betke, M., … Morgansen, K. A. (2016). Using collision cones to assess biological deconfliction methods. Journal of the Royal Society Interface, 13(122). https://doi.org/10.1098/rsif.2016.0502
Mendeley helps you to discover research relevant for your work.